

LINUX SHELL PROGRAMMING LAB (4CS4-24)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

LABORATORY MANUAL

FOR

 IV -SEMESTER COMPUTER SCIENCE& ENGINEERING

Linux Shell Programming Lab- 4CS4-24

INTERNAL MARKS: 30

EXTERNAL MARKS: 20

Department of Computer Science and Engineering

GLOBAL INSTITUTE OF TECHNOLOGY, JAIPUR

LINUX SHELL PROGRAMMING LAB (4CS4-24)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

Scheme as per RTU

Subject

Code
Name of Subject

Exam

Hrs.
L T P

M.M

Sessional/

Mid

Term

M.M.

End

Term

Total

M.M.

4CS4-24 Linux Shell Prog.

Lab

2 - - 2 30 20 50

Assessment criteria

A. Internal Assessment: 30

In continuous evaluation system of the university, a student is evaluated

throughout semester. His/her performance in the lab, attendance, practical

knowledge, problem solving skill, written work in practical file and behavior

are main criteria to evaluate student performance. Apart from that a lab quiz

will be organize to see program programming skill and knowledge

about the proposed subject.

 B. External Assessment: 20

At the end of the semester a lab examination will be scheduled to check

overall programming skill, in which student will need to solve 2 programming

problems in time span of 3 hours.

 C. Total Marks: 30+20=50

LINUX SHELL PROGRAMMING LAB (4CS4-24)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

SYLLABUS AS PER RTU

1. Use of basic Unix Shell Commands: ls, mkdir, rmdir, cd, cat, banner, touch,

file, wc, sort, cut, grep, dd, dfspace, du, ulimit.

2. Commands related to inode, I/O redirection, piping, process control

commands, mails.

3. Shell Programming: shell script exercise based on following:

a. Interactive shell script

b. Positional parameters

c. Arithmetic

d. If-then-fi, if-then-else-fi, nested if-else

e. Logical operators

f. Else + if equals elif, case structure

g. While ,for loop

h. Meta characters

4. Write a shell script to create a file in $USER /class/batch directory. Follow the

Instructions

 Input a page profile to yourself, copy it into other existing file

 Start printing file at certain line

 Print all the difference between two file, copy the two files at

$USER/CSC/2007 directory.

 Print lines matching certain word pattern.

5. Write shell script for-

 Showing the count of users logged in

 Printing Column list of files in your home directory.

 Listing your job with below normal priority

 Continue running your job after logging out.

6. Write a shell script to change date format. Show the time taken in execution of

this script.

7. Write a shell script to print file names in directory showing date of creation &

serial no. of file.

8. Write a shell script to count lines, words & characters in its input. (do not use

wc)

9. Write a shell script to print end of a Glossary file in reverse order using array.

10. Write a shell script to check whether Ram logged in, continue checking further

after every 30 seconds till success.

11. Write a shell script to compute GCD & LCM of two numbers.

12. Write a shell script to find whether a given number is prime.

LINUX SHELL PROGRAMMING LAB (4CS4-24)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

LIST OF SHELL PROGRAMMING LAB EXPERIMENTS:

1. Use of basic Unix Shell Commands: ls, mkdir, rmdir, cd, cat, banner, touch,

file, wc, sort, cut, grep, dd, dfspace, du, ulimit.

2. Commands related to inode, I/O redirection, piping, process control

commands, mails.

3. Shell Programming: shell script exercise based on following:

 Interactive shell script

 Positional parameters

 Arithmetic

 If-then-fi, if-then-else-fi, nested if-else

 Logical operators

 Else + if equals elif, case structure

 While ,for loop

 Meta characters
4. Write a shell script to create a file in $USER /class/batch directory. Follow the

Instructions

 Input a page profile to yourself, copy it into other existing file

 Start printing file at certain line

 Print all the difference between two file, copy the two files at

$USER/CSC/2007 directory.

 Print lines matching certain word pattern.

5. Write shell script for-

 Showing the count of users logged in

 Printing Column list of files in your home directory.

 Listing your job with below normal priority

 Continue running your job after logging out.

6. Write a shell script to change date format. Show the time taken in execution of

this script
7. Write a shell script to print file names in directory showing date of creation & serial

no. of file.

8. Write a shell script to count lines, words & characters in its input. (do not use

wc)

9. Write a shell script to print end of a Glossary file in reverse order using array.

10. Write a shell script to check whether Ram logged in, continue checking further

after every 30 seconds till success.

11. Write a shell script to compute GCD & LCM of two numbers.

12. Write a shell script to find whether a given number is prime.

BEYOND CURRICULUM:

a. Introduction of Linux

b. Shell script to perform database operations for student data like view, add and

delete records in Unix / Linux.

LINUX SHELL PROGRAMMING LAB (4CS4-24)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

Subject: Linux Shell Programming Lab Subject Code: 4CS4-24

Branch: Computer Science &Engineering Year: 2 Semester: 4
th

Mid-Term Marks:30 End Term Marks:20

Lab Plan

S. No. Experiments & Necessary background No. of

Labs

1
Use of basic Unix Shell Commands: ls, mkdir, rmdir, cd, cat,

banner, touch, file, wc, sort, cut, grep, dd, dfspace, du, ulimit

2

Commands related to inode, I/O redirection, piping, process

control commands, mails.

3

Shell Programming: shell script exercise based on following:

 Interactive shell script

 Positional parameters

 Arithmetic

 If-then-fi, if-then-else-fi, nested if-else

 Logical operators

 Else + if equals elif, case structure

 While ,for loop

 Meta characters

4

Write a shell script to create a file in $USER /class/batch

directory. Follow the Instructions

 Input a page profile to yourself, copy it into other

existing file

 Start printing file at certain line

 Print all the difference between two file, copy the two

files at $USER/CSC/2007 directory.

5

Write shell script for-

 Showing the count of users logged in

 Printing Column list of files in your home directory.

 Listing your job with below normal priority

 Continue running your job after logging out

6
Write a shell script to change date format. Show the time

taken in execution of this script

7
Write a shell script to print file names in directory showing

date of creation & serial no. of file.

8
Write a shell script to count lines, words & characters in its

input. (do not use wc)

9
Write a shell script to print end of a Glossary file in reverse

order using array

10
Write a shell script to check whether Ram logged in, continue

checking further after every 30 seconds till success.

11 Write a shell script to compute GCD & LCM of two numbers.
12 Write a shell script to find whether a given number is prime

LINUX SHELL PROGRAMMING LAB (4CS4-24)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

BEYOND CURRICULUM
1 Introduction of Linux

2
Shell script to perform database operations for student data

like view, add and delete records in Unix / Linux

LINUX SHELL PROGRAMMING LAB (4CS4-24)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

Objectives of the laboratory:

 Mention the features of UNIX;

 Recognize, understand and make use of various UNIX commands;

 Gain hands on experience of UNIX commands and shell programs;

 Feel more confident about writing the shell scripts and shell programs;

 Apply the concepts that have been covered in this manual, and

 Know the alternate ways of providing the solutions to the given practical

exercises and problems.

Duties before the lab starts:

Students are required to submit the lab file before the lab starts. Students

missing the lab file submission will not be accepted to the lab.

Tools used in lab:

Operating System- Linux

Rules of behavior in the laboratory:

a). Every laboratory sessions begins SHARP at the specified time in the schedule.

b). Each lab session is two hours long. Students are advised to bring their practical

file

c). Please bring your identity cards with you.

d). Students must have their own copies of the laboratory manual.

e). Food, drinks and cell phone are not allowed inside the laboratory.

How to write Source program in practical file:

a). Every program should be beginning from new fresh page.

b). Students are supposed to follow the prescribed format to write program in

practical file.

c). Index page should be the first page in the practical file and write the complete

objective the index, what you have written as the aim in the program.

LINUX SHELL PROGRAMMING LAB (4CS4-24)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

Experiment No. 1

1 AIM: (A) Explain the following commands:

1. clear

2. cal

3. who

4. date

5. mkdir

6. rm

7. cat

8. cd

9. cp

10. grep

11. ls

12. mv

13. rm

14. rmdir

2 TOOLS/APPARATUS: Linux operating system.

3 STANDARD PROCEDURES:

3.1 Analyzing the Problem:

 Start the Linux and enter the user name and password.

 Now write startx and after that open the terminal.

 At the terminal try the different commands and see the output.

3.2 Designing the Solution:

 At the terminal first perform the command CAL without and with the different

options available for it.

 Like $ cal and then enter. The calendar will be displayed at the terminal.

 $ cal –m and then enter. In the calendar Monday will be displayed as the first

day of the week.

 Same way perform the other commands like CLEAR, WHO, DATE, MKDIR,

RM etc.

3.3 Implementing the Solution:

3.3.1 Writing Source Code:

1) CAL:

At the terminal write the following:

[user1@com]$ cal

[user1@com]$ cal -m

[user1@com]$ cal -j

[user1@com]$ cal –y

2) CLEAR:
At the terminal write the following:

[user1@com]$ clear

LINUX SHELL PROGRAMMING LAB (4CS4-24)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

3) WHO:

At the terminal write the following:

[user1@com]$ who

[user1@com]$ who -q

[user1@com]$ who -H

[user1@com]$ who –m

4) DATE:

At the terminal write the following:

[user1@com]$ date

[user1@com]$ date –d “2 days ago”

[user1@com]$ date +%D

[user1@com]$ date +%d

[user1@com]$ date +%d%m%h

5) MKDIR and RM:

At the terminal write the following:

[user1@com]$ cd Desktop/

[user1@com]$ ls

[user1@com]$ cd newfiles/

[user1@com]$ ls

[user1@com]$ mkdir newfile1

[user1@com]$ ls

[user1@com]$ rm Sum_Of_Digits.txt

[user1@com]$ ls

6)cat

catallows you to read multiple files and then print them out. You can combine files by

using the > operator and append files by using >>.

Syntax: cat [argument] [specific file]

Example:

cat abc.txt

If you want to append three files (abc.txt, def.txt, xyz.txt), give the command as,

cat abc.txt def.txt xyz.txt > all

7)cd, chdir

cd (or chdir) stands for “change directory”. This command is the key command to

move around your file structure.

Syntax: cd [name of directory you want to move to]

When changing directories, start with / and then type the complete file path, like

cd /vvs/abc/xyz

8)cp
The cp command copies files or directories from one place to another. You can copy a

set of files to another file, or copy one or more files under the same name in a

directory. If the destination of the file you want to copy is an existing file, then the

LINUX SHELL PROGRAMMING LAB (4CS4-24)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

existing file is overwritten. If the destination is an existing directory, then the file is

copied into that directory.

Syntax: cp [options] file1 file2

If you want to copy the file favourites.html into the directory called laksh, you give

the command as:

cp favourites.html /vvs/laksh/
A handy option to use with cp is -r. This recursively copies a particular directory and

all of its contents to the specified directory, so you won’t have to copy one file at a

time.

9)grep

The grep command searches a file or files for lines that match a provided regular

expression (“grep” comes from a command meaning to globally search for a regular

expression and then print the found matches).

Syntax: grep [options] regular expression [files]

To exit this command, type 0 if lines have matched, 1 if no lines match, and 2 for

errors. This is very useful if you need to match things in several files. If you wanted to

find out which files in our vvsdirectory contained the word “mca” you could use grep

to search the directory and match those files with that word. All that you have to do is

give the command as shown:

grep ‘mca’ /vvs/*
The * used in this example is called a meta-character, and it represents matching zero

or more of the preceding characters. In this example, it is used to mean “all files and

directories in this directory”. So, grep will search all the files and directories in vvsand

tell you which files contain “mca”.

10)ls

lswill list all the files in the current directory. If one or more files are given, ls will

display the files contained within “name” or list all the files with the same name as

“name”. The files can be displayed in a variety of formats using various options.

Syntax: ls [options] [names]

lsis a command you'll end up using all the time. It simply stands for list. If you are in

a directory and you want to know what files and directories are inside that directory,

type ls. Sometimes the list of files is very long and it flies past your screen so quickly

you miss the file you want. To overcome this problem give the command as shown

below:

ls | more

The character | (called pipe) is typed by using shift and the \ key. | more will show as

many files as will fit on your screen, and then display a highlighted “more” at the

bottom. If you want to see the next screen, hit enter (for moving one line at a time) or

the spacebar (to move a screen at a time). | morecan be used anytime you wish to

view the output of a command in this way.

LINUX SHELL PROGRAMMING LAB (4CS4-24)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

A useful option to use with ls command is -l. This will list the files and directories in

a long format. This means it will display the permissions (see chmod), owners, group,

size, date and time the file was last modified, and the filename.

drwxrwxr-xvvs staff 512 Apr 5 09:34 sridhar.txt

-rwx-rw-r-- vvs staff 4233 Apr 1 10:20 resume.txt

-rwx-r--r-- vvs staff 4122 Apr 1 12:01 favourites.html

There are several other options that can be used to modify the ls command, and many

of these options can be combined. -a will list all files in a directory, including those

files normally hidden. -F will flag filenames by putting / on directories, @ on

symbolic links, and * on executable files.

11) mv

mv moves files and directories. It can also be used to rename files or directories.

Syntax: mv [options] source target

If you wanted to rename vvs.txt to vsv.txt, you should give the command as:

mv vvs.txt vsv.txt

After executing this command, vvs.txt would no longer exist, but a file with name

vsv.txt would now exist with the same contents.

12)rm

rmremoves or deletes files from a directory.

Syntax: rm [options] files

In order to remove a file, you must have write permission to the directory where the

file is located. While removing a which does’t have write permission on, a prompt

will come up asking you whether or not you wish to override the write protection.

The -r option is very handy and very dangerous. -r can be used to remove a directory

and all its contents. If you use the -i option, you can possibly catch some disastrous

mistakes because it’ll ask you to confirm whether you really want to remove a file

before going ahead and doing it.

13)rmdir

rmdirallows you to remove or delete directories but not their contents. A directory

must be empty in order to remove it using this command.

Syntax: rmdir [options] directories

If you wish to remove a directory and all its contents, you should use rm -r.

Compilation /Running and Debugging the Solution:

 The code written above will display the following output.

For the first command CAL the output is like this:

LINUX SHELL PROGRAMMING LAB (4CS4-24)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

The cal command with the option y will display the following output.

For the second command CLEAR :

LINUX SHELL PROGRAMMING LAB (4CS4-24)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

For the third command WHO :

For the command DATE:

For the commands MKDIR and RMDIR the output will be like this:

LINUX SHELL PROGRAMMING LAB (4CS4-24)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

Testing the Solution:

 All the commands will display the output based on it and the options given to

that

command.

 If we are giving a command and the option to that command then that option

must be

of that command only otherwise will display the error.

Conclusions :

 Using this we can run different command and see the output.

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

Lab 2

1. Aim: Commands related to inode, I/O redirection and piping, mail, xargs, export, set-unset,

source, ps, kill, jobs.

2. Software Used: Operating System: Linux

3. Source Code/experiment description:

mail:

Send or read e-mail messages.

This stripped-down command-line mail client works fine as a command embedded in a script.

Example: A script that mails itself

#!/bin/sh

self-mailer.sh: Self-mailing script

adr=${1:-`whoami`} # Default to current user, if not specified.

Typing 'self-mailer.sh wiseguy@superdupergenius.com'

#+ sends this script to that addressee.

Just 'self-mailer.sh' (no argument) sends the script

#+ to the person invoking it, for example, bozo@localhost.localdomain.

For more on the ${parameter:-default} construct,

#+ see the "Parameter Substitution" section

#+ of the "Variables Revisited" chapter.

===

=======

cat $0 | mail -s "Script \"`basename $0`\" has mailed itself to you." "$adr"

===

=======

--

Greetings from the self-mailing script.

A mischievous person has run this script,

#+ which has caused it to mail itself to you.

Apparently, some people have nothing better

#+ to do with their time.

--

echo "At `date`, script \"`basename $0`\" mailed to "$adr"."

exit 0

inode:

Example: Deleting a file by its inode number

#!/bin/bash

idelete.sh: Deleting a file by its inode number.

This is useful when a filename starts with an illegal character,

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

#+ such as ?or -.

ARGCOUNT=1 # Filename arg must be passed to script.

E_WRONGARGS=70

E_FILE_NOT_EXIST=71

E_CHANGED_MIND=72

if [$# -ne "$ARGCOUNT"]

then

echo "Usage: `basename $0` filename"

exit $E_WRONGARGS

fi

if [! -e "$1"]

then

echo "File \""$1"\" does not exist."

exit $E_FILE_NOT_EXIST

fi

inum=`ls -i | grep "$1" | awk '{print $1}'`

inum = inode (index node) number of file

Every file has an inode, a record that holds its physical address info.

echo; echo -n "Are you absolutely sure you want to delete \"$1\" (y/n)? "

The '-v' option to 'rm' also asks this.

read answer

case "$answer" in

[nN]) echo "Changed your mind, huh?"

exit $E_CHANGED_MIND

;;

*) echo "Deleting file \"$1\".";;

esac

find . -inum $inum -exec rm {} \;

^^

Curly brackets are placeholder

#+ for text output by "find."

echo "File "\"$1"\" deleted!"

exit 0

Piping:

Example: Piping the output of echo to a read

#!/bin/bash

badread.sh:

Attempting to use 'echo and 'read'

#+ to assign variables non-interactively.

a=aaa

b=bbb

c=ccc

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

echo "one two three" | read a b c

Try to reassign a, b, and c.

echo

echo "a = $a" # a = aaa

echo "b = $b" # b = bbb

echo "c = $c" # c = ccc

Reassignment failed.

Try the following alternative.

var=`echo "one two three"`

set -- $var

a=$1; b=$2; c=$3

echo "-------"

echo "a = $a" # a = one

echo "b = $b" # b = two

echo "c = $c" # c = three

a=aaa # Starting all over again.

b=bbb

c=ccc

echo; echo

echo "one two three" | (read a b c;

echo "Inside subshell: "; echo "a = $a"; echo "b = $b"; echo "c = $c")

a = one

b = two

c = three

echo "-----------------"

echo "Outside subshell: "

echo "a = $a" # a = aaa

echo "b = $b" # b = bbb

echo "c = $c" # c = ccc

echo

exit 0

I/O Redirection:

Example1: Redirecting stdin using exec

#!/bin/bash

Redirectingstdin using 'exec'.

exec 6<&0 # Link file descriptor #6 with stdin.

Saves stdin.

exec< data-file # stdin replaced by file "data-file"

read a1 # Reads first line of file "data-file".

read a2 # Reads second line of file "data-file."

echo

echo "Following lines read from file."

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

echo "-------------------------------"

echo $a1

echo $a2

echo; echo; echo

exec 0<&6 6<&-

Now restore stdin from fd #6, where it had been saved,

#+ and close fd #6 (6<&-) to free it for other processes to use.

<&6 6<&- also works.

echo -n "Enter data "

read b1 # Now "read" functions as expected, reading from normal stdin.

echo "Input read from stdin."

echo "----------------------"

echo "b1 = $b1"

echo

exit 0

Example2: Redirecting stdout using exec

#!/bin/bash

reassign-stdout.sh

LOGFILE=logfile.txt

exec 6>&1 # Link file descriptor #6 with stdout.

Saves stdout.

exec> $LOGFILE # stdout replaced with file "logfile.txt".

--- #

All output from commands in this block sent to file $LOGFILE.

echo -n "Logfile: "

date

echo "-------------------------------------"

echo

echo "Output of \"ls -al\" command"

echo

ls -al

echo; echo

echo "Output of \"df\" command"

echo

df

--- #

exec 1>&6 6>&- # Restore stdout and close file descriptor #6.

echo

echo "== stdout now restored to default == "

echo

ls -al

echo

exit 0

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

xargs:

A filter for feeding arguments to a command, and also a tool for assembling the commands

themselves. It breaks a data stream into small enough chunks for filters and commands to

process. Consider it as a powerful replacement for backquotes. In situations where command

substitution fails with a too many arguments error, substituting xargs often works. [65]

Normally, xargs reads from stdin or from a pipe, but it can also be given the output of a file.

The default command for xargs is echo. This means that input piped to xargs may have linefeeds

and other whitespace characters stripped out.

bash$ ls -l

total 0

-rw-rw-r-- 1 bozo bozo 0 Jan 29 23:58 file1

-rw-rw-r-- 1 bozo bozo 0 Jan 29 23:58 file2

bash$ ls -l | xargs

total 0 -rw-rw-r-- 1 bozo bozo 0 Jan 29 23:58 file1 -rw-rw-r-- 1 bozo bozo 0 Jan...

bash$ find ~/mail -type f | xargs grep "Linux"

./misc:User-Agent: slrn/0.9.8.1 (Linux)

./sent-mail-jul-2005: hosted by the Linux Documentation Project.

./sent-mail-jul-2005: (Linux Documentation Project Site, rtf version)

./sent-mail-jul-2005: Subject: Criticism of Bozo's Windows/Linux article

./sent-mail-jul-2005: while mentioning that the Linux ext2/ext3 filesystem

. . .

ls | xargs -p -l gzipgzips every file in current directory, one at a time, prompting before each

operation.

Note that xargs processes the arguments passed to it sequentially, one at a time.

bash$ find /usr/bin | xargs file

/usr/bin: directory

/usr/bin/foomatic-ppd-options: perl script text executable

. . .

An interesting xargs option is -n NN, which limits to NN the number of arguments passed.

ls | xargs -n 8 echo lists the files in the current directory in 8 columns.

Another useful option is -0, in combination with find -print0 or grep -lZ. This allows handling

arguments containing

whitespace or quotes.

find / -type f -print0 | xargs -0 grep -liwZ GUI | xargs

-0 rm -f

grep-rliwZ GUI / | xargs -0 rm -f

Set-Unset:

set

The set command changes the value of internal script variables/options. One use for this is to

toggle option flags

which help determine the behavior of the script. Another application for it is to reset the

positional parameters that a script sees as the result of a command (set `command`). The script

can then parse the fields of the command output.

Example: Using set with positional parameters

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

#!/bin/bash

ex34.sh

Script "set-test"

Invoke this script with three command-line parameters,

for example, "sh ex34.sh one two three".

echo

echo "Positional parameters before set \`uname -a\` :"

echo "Command-line argument #1 = $1"

echo "Command-line argument #2 = $2"

echo "Command-line argument #3 = $3"

set `uname -a` # Sets the positional parameters to the output

of the command `uname -a`

echo

echo +++++

echo $_ # +++++

Flags set in script.

echo $- # hB

Anomalous behavior?

echo

echo "Positional parameters after set \`uname -a\` :"

$1, $2, $3, etc. reinitialized to result of `uname -a`

echo "Field #1 of 'uname -a' = $1"

echo "Field #2 of 'uname -a' = $2"

echo "Field #3 of 'uname -a' = $3"

echo \#\#\#

echo $_ # ###

echo

exit 0

unset

The unset command deletes a shell variable, effectively setting it to null. Note that this command

does not affect positional parameters.

bash$ unset PATH

bash$ echo $PATH

bash$

Example: "Unsetting" a variable

#!/bin/bash

unset.sh: Unsetting a variable.

variable=hello # Initialized.

echo "variable = $variable"

unset variable # Unset.

In this particular context,

#+ same effect as: variable=

echo "(unset) variable = $variable" # $variable is null.

if [-z "$variable"] # Try a string-length test.

then

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

echo "\$variable has zero length."

fi

exit 0

export:

The export command makes available variables to all child processes of the running script or

shell. One important use of the export command is in startup files, to initialize and make

accessible environmental variables to subsequent user processes.

Note: Unfortunately, there is no way to export variables back to the parent process, to the process

that called or invoked the script or shell.

Example: Using export to pass a variable to an embedded awk script

#!/bin/bash

Yet another version of the "column totaler" script (col-totaler.sh)

#+ that adds up a specified column (of numbers) in the target file.

This uses the environment to pass a script variable to 'awk' . . .

#+ and places the awk script in a variable.

ARGS=2

E_WRONGARGS=85

if [$# -ne "$ARGS"] # Check for proper number of command-line args.

then

echo "Usage: `basename $0` filename column-number"

exit $E_WRONGARGS

fi

filename=$1

column_number=$2

#===== Same as original script, up to this point =====#

exportcolumn_number

Export column number to environment, so it's available for retrieval.

awkscript='{ total += $ENVIRON["column_number"] }

END { print total }'

Yes, a variable can hold an awk script.

Now, run the awk script.

awk "$awkscript" "$filename"

Thanks, Stephane Chazelas.

exit 0

It is possible to initialize and export variables in the same operation, as in export var1=xxx.

source, . (dot command):

This command, when invoked from the command-line, executes a script. Within a script, a

source file-name loads the file file-name. Sourcing a file (dot-command) imports code into the

script, appending to the script (same effect as the #include directive in a C program). The net

result is the same as if the "sourced" lines of code were physically present in the body of the

script. This is useful in situations when multiple scripts use a common data file or function

library.

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

Example: "Including" a data file

#!/bin/bash

. data-file # Load a data file.

Same effect as "source data-file", but more portable.

The file "data-file" must be present in current working directory,

#+ since it is referred to by its 'basename'.

Now, reference some data from that file.

echo "variable1 (from data-file) = $variable1"

Advanced Bash-Scripting Guide

Chapter 15. Internal Commands and Builtins 198

echo "variable3 (from data-file) = $variable3"

let "sum = $variable2 + $variable4"

echo "Sum of variable2 + variable4 (from data-file) = $sum"

echo "message1 (from data-file) is \"$message1\""

Note: escaped quotes

Print_messageThis is the message-print function in the data-file.

exit 0

File data-file for above Example Must be present in same directory.

ps:

Process Statistics: lists currently executing processes by owner and PID (process ID). This is

usually invoked with ax or aux options, and may be piped to grep or sed to search for a specific

process.

Example:

bash$ ps ax | grep sendmail

295 ? S 0:00 sendmail: accepting connections on port 25

To display system processes in graphical "tree" format: psafjx or ps ax --forest.

kill:

Forcibly terminate a process by sending it an appropriate terminate signal.

Example: A script that kills itself

#!/bin/bash

self-destruct.sh

kill $$ # Script kills its own process here.

Recall that "$$" is the script's PID.

echo "This line will not echo."

Instead, the shell sends a "Terminated" message to stdout.

exit 0 # Normal exit? No!

After this script terminates prematurely,

#+ what exit status does it return?

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

sh self-destruct.sh

echo $?

143

143 = 128 + 15

TERM signal

kill -l lists all the signals (as does the file /usr/include/asm/signal.h). A kill -9 is a sure kill, which

will usually terminate a process that stubbornly refuses to die with a plain kill. Sometimes, a kill

-15 works. A zombie process, that is, a child process that has terminated, but that the parent

process has not (yet) killed, cannot be killed by a logged-on user -- you can't kill something that

is already dead -- but init will generally clean it up sooner or later.

Jobs:

Lists the jobs running in the background, giving the job number. Not as useful as ps.

It is all too easy to confuse jobs and processes. Certain builtins, such as kill, disown, and wait

accept either a job number or a process number as an argument. The fg, bg and jobs commands

accept only a job number.

Example:

bash$ sleep 100 &

[1] 1384

bash $ jobs

[1]+ Running sleep 100 &

"1" is the job number (jobs are maintained by the current shell). "1384" is the PID or process ID

number (processes are maintained by the system). To kill this job/process, either a kill %1 or a

kill 1384 works.

4. Conclusion: In this experiment student learn various commands for shell scripting.

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

Lab 3

1. AIM: Shell Programming: shell script exercise based on following:

 Interactive shell script

 Positional parameters

 Arithmetic

 If-then-fi, if-then-else-fi, nested if-else

 Logical operators

 Else + if equals elif, case structure

 While ,for loop

 Meta characters

2. SOFTWARE USED: Operating System: Linux

3. SOURCE CODE:

If-then-fi, if-then-else-fi, nested if-else-

if [$# -ne 1]

then

echo "Usage - $0 file-name" exit 1 fi

if [-f $1

then

echo "$1 file exist"

else

echo "Sorry, $1 file does not exist"

fi

Logical operators-

integer comparison

-eq

is equal to

if ["$a" -eq "$b"]

-ne

is not equal to

if ["$a" -ne "$b"]

-gt

is greater than

if ["$a" -gt "$b"]

-ge

is greater than or equal to

if ["$a" -ge "$b"]

-lt

is less than

if ["$a" -lt "$b"]

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

-le

is less than or equal to

if ["$a" -le "$b"]

<

is less than (within double parentheses)

(("$a" < "$b"))

<=

is less than or equal to (within double parentheses)

(("$a" <= "$b"))

>

is greater than (within double parentheses)

(("$a" > "$b"))

>=

is greater than or equal to (within double parentheses)

(("$a" >= "$b"))

string comparison

=

is equal to

if ["$a" = "$b"]

==

is equal to

if ["$a" == "$b"]

This is a synonym for =.

 1 [[$a == z*]] # true if $a starts with an "z" (pattern matching)

 2 [[$a == "z*"]] # true if $a is equal to z*

 3

 4 [$a == z*] # file globing and word splitting take place

 5 ["$a" == "z*"] # true if $a is equal to z*

 6

 7 # Thanks, S.C.

!=

is not equal to

if ["$a" != "$b"]

This operator uses pattern matching within a construct.

<

is less than, in ASCII alphabetical order

if [["$a" < "$b"]]

if ["$a" \< "$b"]

Note that the "<" needs to be escaped within a [] construct.

>

is greater than, in ASCII alphabetical order

if [["$a" > "$b"]]

if ["$a" \> "$b"]

Note that the ">" needs to be escaped within a [] construct.

See Example 26-6 for an application of this comparison operator.

http://www.faqs.org/docs/abs/HTML/dblparens.html
http://www.faqs.org/docs/abs/HTML/arrays.html#BUBBLE

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

-z

string is "null", that is, has zero length

-n

string is not "null".

Else + if equals elif, case structure

Shell Program to find Largest of Three Numbers

elif

clear

echo "Enter first number: "

read a

echo "Enter second number: "

read b

echo "Enter third number: "

read c

if [$a -gt $b] && [$a -gt $c]

then

echo "$a is greater"

elif [$b -gt $a] && [$b -gt $c]

then

echo "$b is greater"

elif [$c -gt $a] && [$c -gt $b]

then

echo "$c is greater"

fi

case structure

if test $# = 3

then

case $2 in

+) let z=$1+$3;;

-) let z=$1-$3;;

/) let z=$1/$3;; x|

X) let z=$1*$3;; *) echo Warning - $2 invalid operator, only +,-,x,/ operator allowed

exit;;

esac

echo Answer is $z else

echo "Usage - $0 value1 operator value2"

echo " Where, value1 and value2 are numeric values"

echo " operator can be +,-,/,x (For Multiplication)"

fi

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

While ,for loop

Shell Program to Print Numbers from 1 to 10 using While Loop

clear

n=1

while [$n -le 10]

do

echo $n

n=`expr $n + 1`

done

Shell Program to Print Numbers from 1 to 10 using For Loop

clear

for ((i=1; i<=10; i++))

do

echo $i

done

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

Lab 4

1.AIM: Write a shell script to create a file in $USER /class/batch directory. Follow the

Instructions.

 Input a page profile to yourself, copy it into other existing file

 Start printing file at certain line

 Print all the difference between two file, copy the two files at $USER/CSC/2007

directory.

 Print lines matching certain word pattern.

 2. Software Used:

 Operating System: LINUX

 3. Source Code :

(i) Input a page profile to yourself, copy it into other existing file;

Solution:-

echo”create a file in /user/class/batch in directory”

mkdir –p user/class/b1

echo “Display present working DIR”

cd user/class/b1

pwd

echo “Enter a file name”

read file1

echo “Enter contains in $file1”

cat > $file1

echo “Enter existing file name”

read file2

echo “Display copy of contains $file1 to $file2”

cp $file1 $file2

cat $file2

(ii) Start printing file at certain line

Solution:-

echo”create a file in /user/class/batch in directory”

mkdir –p user/class/b1

echo “Display present working DIR”

cd user/class/b1

pwd

(iii) echo “Enter a file name”

read file1

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

echo “Enter contains in $file1”

cat > $file1

echo “Start Printing at 5 line “

tail +5 $file1

(iii) Print all the difference between two file, copy the two files at

$USER/CSC/2007 directory.

Solution:-
echo “enter first file name”

read file1

echo “enter second file name”

read file2

echo “enter third file name”

read file3

echo “Enter contains to $file1”

cat> $ file1

echo “Enter contains to $file2”

cat> $ file2

echo “Display difference between $file1 and $file2 copy to $file3”

diff –a $file1 $file2 > $file3

cat $file3

iv)Print lines matching certain word pattern.

Solution :-

#mkdir IT

#cd IT

#vim assignmentno4.4.sh

echo “create a file “

read file1

echo “inputs contains in file $file1”

cat> $file1

echo “Enter word we findout “

read f

grep –ni $f $file1

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

Lab 5

1.AIM: Write shell script for-

 Showing the count of users logged in

 Printing Column list of files in your home directory.

 Listing your job with below normal priority

 Continue running your job after logging out.

2. SOFTWARE USED:

Operating System: Linux

3. SOURCE CODE:

(i) Showing the count of users logged in,

sol-> echo “ Show all users login”

who

echo “ count all login name”

who |wc –l

(ii)Printing Column list of files in your home directory
sol -> echo “ Printing 3-colomn in a Home directory”

ls – l | cut -17-24,39 - 42,56 -

(iii)Listing your job with below normal priority

Sol-> echo “list of normal priority “

ps – al

echo – al | cut – c26-29, 70 -

(iv)Continue running your job after logging out.

 # nohup command-with-options &

note:- Nohup stands for no hang up

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

Lab 6

1. AIM: Write a shell script to change data format. Show the time taken in execution of this

script.

2. SOTWARE USED:

Operating System: Linux

3. SOURCE CODE:

echo “ Enter file name “

readfname

echo “ Input contains in $fname”

cat>fname

echo “Display create file than current time “

ls –l $fname

echo “ Modification $fname”

vi $ fname

echo “ show access time “

ls –ult $fname

echo “ show modification time “

ls –clt $ fname

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

Lab 7

1.AIM:. Write a shell script to print file names in directory showing date of creation & serial no.

of file.

2. SOFTWARE USED:

Operating System: Linux

3. SOURCE CODE:

echo “sort login name by time”

echo “show login name”

who

echo “show only name and time “

who | gwk ‘{print $1,$5}’

echo “show sort by time “

who |gawk ‘{ print $5,$1}’

Output

Show only name and time

root 12:48

show sort by time

12:48 root

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

Lab 8

1. AIM: Write a shell script to count lines, words & characters in its input. (do not use wc)

2. SOTWARE USED:

Operating System: Linux

3. SOURCE CODE:

read –p “create file name “

fname

echo “input the contains of file “

cat> $ fname

clear

echo “ Display all record “

cat $fname

echo “ show file line , word ,char”

gawk ‘{ nc+=length ($0)+1nw +=NF}

END ‘{print “ line =” NF , “\n word =”nw, “\n char =”nc}’ $fname

Output

Create and enter file name

Display all records

11

22

33

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

Lab 9

1. AIM: Write a shell script to print end of a Glossary file in reverse order using array.

2. SOFTWARE USED:

Operating System: Linux

3. SOURCE CODE

file_name="$1"

 #Check if file name is given, and it exists

if ["$#" -eq 0]

then

echo "Syntax: $0 filename"

exit

elif [! -f "$file_name"]

then

echo "File \""$file_name"\" does not exist"

exit

fi

 #Set the IFS variable to \n this enables reading one \n separated

 # line per read

IFS=$'\n'

declare -a arr

 #Read from file_name and store each line into next array location.

while read -r line

do

arr+=("${line}");

done< "$file_name"

 #If last line is not \n terminated read returns false, body of while

 # is not executed. Instead of saving it in the array directly print it

 # because it will be the first line in the file. Also make sure not to

 # terminate the line with newline character, so use echo -n

if [! -z "$line"]

then

echo -n "$line"

fi

 #Count number of lines, and adjust index

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

i=${#arr[*]}

i=$((i-1))

 #Print the lines in reverse order with a newline after each line

 # (no -n after echo ensures it. Include the -E parameter to make sure

 # no slash '\' are interpreted as escape sequences

while [$i -ge 0]

do

echo -E "${arr[$i]}"

 i=$((i-1))

done

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

Lab 10

1. AIM: Write a shell script to check whether Ram logged in, continue checking further after

every 30 seconds till success.

2. SOTWARE USED:

Operating System: Linux

3. SOURCE CODE:

Invalidoptions()

{

 echo "Usage: `basename $0` [OPTIONS]"

 echo "OPTIONS:"

 echo -e "\t -d for display today's date"

 echo -e "\t -u for Logged in users list"

 echo -e "\t -f ARG for Disk and Memory Statistics"

 echo -e "\t (ARG=D for disk statistics; ARG=M for memory statistics)"

 echo -e "\t -c ARG for Top CPU consuming process"

 echo -e "\t (ARG=10 means top 10 process)"

 echo -e "\t -m ARG for Top Memory consuming process"

 echo -e "\t (ARG=10 means top 10 process)"

 echo -e "\t Note: Only one option at a time and -f,-c and -m require argument"

 exit 1

}

Isnumber()

{

 if [$1 -eq $1 2> /dev/null]

 then

 :

 else

 echo -e "You supplied bad argument, \"$1\" is not a number"

Invalidoptions

 fi

}

if [$# -lt 1 -o $# -gt 2]

then

Invalidoptions

if [$# -eq 1 -a "$1" != "-d" -a "$1" != "-u" -a "$1" != "-f" -a "$1" != "-c"]

fi

then

Invalidoptions

fi

if [$# -eq 2] && ["$1" != "-f" -a "$1" != "-c" -a "$1" != "-m"]

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

then

Invalidoptions

fi

choice=

top="head -$2"

while getoptsudf:c:m: choice

do

case $choice in

 d) echo -e " Today's Date: \c"

 date +" %d-%h-%Y Time: %T";;

 u) echo -e "\tCurrently Logged In Users"

 who;;

 f)

 if ["$OPTARG" = "D"]

 then

 echo -e "\t\tDisk Statistics"

df -h | grep "%"

elif ["$OPTARG" = "M"]

 then

 echo -e "\t Memory Statistics "

 free -m | awk 'BEGIN{printf "\t\tTotal\tUsed\tFree\n"; OFS="\t" }\

 /Mem/||/Swap/{printf "\t"; print $1,$2,$3,$4}'

 else

Invalidoptions

 fi;;

 m) Isnumber $OPTARG

 k3sort="sort -nr -k 3"

 echo -e " PID PPID MEM CPU COMMAND "

ps -Aopid= -o ppid= -o pmem= -o pcpu= -o comm=|$k3sort|$top;;

 c) Isnumber $OPTARG

 k4sort="sort -nr -k 4"

 echo -e " PID PPID MEM CPU COMMAND "

ps -Aopid= -o ppid= -o pmem= -o pcpu= -o comm=|$k4sort|$top;;

esac

done

Output:
[root@localhost blog]# sh sys_monitor2.sh -u

 Currently Logged In Users

root tty7 2009-09-23 13:48 (:0)

root pts/2 2009-09-23 14:36 (:0.0)

[root@localhost blog]# sh sys_monitor2.sh -d

Todays Date: 23-Sep-2009 Time: 16:50:38

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

[root@localhost blog]# sh sys_monitor2.sh -m 5

PID PPID MEM CPU COMMAND

3122 3102 9.6 3.0 firefox

2765 2540 1.9 0.0 nautilus

3849 1 1.7 1.0 ktorrent

2882 1 1.6 0.0 tomboy

2810 1 1.6 0.0 /usr/bin/sealer

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

Lab-11

1. AIM: Write a shell script to compute GCD & LCM of two numbers.

2. SOTWARE USED:

Operating System: Linux

3. SOURCE CODE:

Write a shell script to compute GCD of two numbers.

echo Enter two numbers with space in between

read a b

m=$a

if [$b -lt $m]

then

m=$b

fi

while [$m -ne 0]

do

x=`expr $a % $m`

y=`expr $b % $m`

if [$x -eq 0 -a $y -eq 0]

then

echogcd of $a and $b is $m

break

fi

m=`expr $m - 1`

done

 Write a shell script to compute LCM of two numbers.

echo "Enter first no"

read a

echo "Enter 2nd no"

read b

p= 'expr $a * $b'

while [$b -ne 0]

do

r= 'expr $a % $b'

a=$b

b=$r

done

LCM = 'expr $p / $a'

echo "LCM = $LCM"

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

Lab 12

1. AIM: Write a shell script to find whether a given number is prime.

2. SOFTWARE USED:

 Operating System: Linux

3. SOURCE CODE:

i=2

rem=1

echo "Enter a number"

read num

if [$num -lt 2]

then

echo -e "$num is not prime\n"

exit 0

fi

while [$i -le `expr $num / 2` -a $rem -ne 0]

do

rem=`expr $num % $i`

i=`expr $i + 1`

done

if [$rem -ne 0]

then

echo -e "$num is prime\n"

else

echo -e "$num is not prime\n"

fi

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

BEYOND CURRICULUM

EXPERIMENT NO. 1

1. AIM: Making a dictionary

2. SOURCE CODE:

E_BADARGS=65

if [! -r "$1"] # Need at least one

then #+ valid file argument.

echo "Usage: $0 files-to-process"

exit $E_BADARGS

fi

cat $* #| Contents of specified files to stdout.

tr A-Z a-z | # Convert to lowercase.

tr ' ' '\012'| # New: change spaces to newlines.

tr -cd '\012[a-z][0-9]' | # Get rid of everything non-alphanumeric

#+ (in original script).

tr -c '\012a-z' '\012' | # Rather than deleting non-alpha chars,

 #+ change them to newlines.

sort | # $SORT options unnecessary now.

uniq | # Remove duplicates.

grep -v '^#' | # Delete lines beginning with a hashmark.

grep -v '^$' # Delete blank lines.

exit 0

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

EXPERIMENT NO. 2

1. Shell script to perform database operations for student data like view, add and delete

records in Unix / Linux.

2. SOURCE CODE:

clear

i="y"

echo "Enter name of database "

read db

while [$i = "y"]

do

clear

echo "1.View the Data Base "

echo "2.View Specific Records "

echo "3.Add Records "

echo "4.Delete Records "

echo "5.Exit "

echo "Enter your choice "

readch

case $ch in

1)cat $db;;

2)echo "Enter id "

read id

grep -i "$id" $db;;

3)echo "Enter new std id "

ireadtid

echo "Enter new name:"

readtnm

echo "Enter designation "

read des

echo "Enter college name"

read college

echo "$tid $tnm $des $college">>$db;;

4)echo "Enter Id"

read id

 # set -a

 # sed '/$id/d' $db>dbs1

grep -v "$id" $db>dbs1

echo "Record is deleted"

cat dbs1;;

5)exit;;

*)echo "Invalid choice ";;

esac

echo "Do u want to continue ?"

Unix &Shell Programming Lab(3CS11A)

Department of Computer Science & Engineering

Global Institute of Technology, Jaipur

read i

if [$i != "y"]

then

exit

Fi

done

